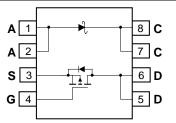
June 2001

FDFS2P106A

Integrated 60V P-Channel PowerTrench[®] MOSFET and Schottky Diode

General Description


The FDFS2P106A combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low onstate resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Features

- $V_F < 0.45 V @ 1 A (T_J = 125^{\circ}C)$ $V_F < 0.53 V @ 1 A$ $V_F < 0.62 V @ 2 A$
- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility

Absolute Maximum Ratings T_A=25°C unless otherwise noted

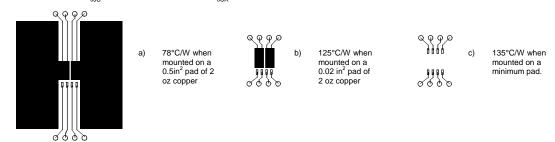
Symbol	Parameter	Ratings	Units	
V _{DSS}	MOSFET Drain-Source Voltage		-60	V
V _{GSS}	MOSFET Gate-Source Voltage	±20	V	
I _D	Drain Current – Continuous	(Note 1a)	-3	А
	– Pulsed		-10	
P _D	Power Dissipation for Dual Operation		2	W
	Power Dissipation for Single Operation	(Note 1a)	1.6	
		(Note 1b)	1	
		(Note 1c)	0.9	
Γ _J , T _{STG}	Operating and Storage Junction Temper	rature Range	-55 to +150	°C
V _{RRM}	Schottky Repetitive Peak Reverse Volta	ge	45	V
0	Schottky Average Forward Current (Note 1a)		1	А

				Device	Device Marking
FDFS2P106A FDFS2P106A 13" 12mm	2500 units	12mm	13"	FDFS2P106A	FDFS2P106A

©2001 Fairchild Semiconductor Corporation

Electrical Characteristics $T_{A} = 25^{\circ}C$ unless otherwise noted Symbol Min Max Units Parameter **Test Conditions** Тур **Off Characteristics** Drain-Source Breakdown Voltage $V_{GS} = 0 V$, $I_{D} = -250 \ \mu A$ -60 V BV_{DSS} Breakdown Voltage Temperature ΔBV_{DSS} $I_D = -250 \ \mu\text{A}$, Referenced to 25°C -60 mV/°C ΔT_{J} Coefficient Zero Gate Voltage Drain Current $V_{DS} = -48 V$, $V_{GS} = 0 V$ -1 IDSS μΑ Gate-Body Leakage, Forward $V_{GS} = 20V$, $V_{DS} = 0 V$ 100 IGSSF nA Gate-Body Leakage, Reverse $V_{GS} = -20 V$ $V_{DS} = 0 V$ -100 nA IGSSR On Characteristics (Note 2) Gate Threshold Voltage V_{GS(th)} $V_{DS} = V_{GS}$, $I_{D} = -250 \ \mu A$ -1 -1.6 -3 V $\Delta V_{GS(th)}$ Gate Threshold Voltage $I_D = -250 \ \mu$ A,Referenced to 25° C 4 mV/°C **Temperature Coefficient** $\Delta T_{\rm J}$ $\begin{array}{ll} V_{GS} = -10 \ V, & I_{D} = -3A \\ V_{GS} = -4.5 \ V, & I_{D} = -2.7 \ A \end{array}$ Static Drain-Source 110 R_{DS(on)} 91 mΩ **On-Resistance** 112 140 $V_{GS} = -10 \text{ V}, I_D = -3 \text{ A}, T_J = 125^{\circ}\text{C}$ 150 192 **On-State Drain Current** $V_{GS} = -10 V$, $V_{DS} = -5 V$ -10 $I_{D(on)}$ А $V_{DS} = -5 V$, $I_{\rm D} = -3.3 \, \text{A}$ Forward Transconductance 8 S \mathbf{g}_{FS} **Dynamic Characteristics** Ciss Input Capacitance 714 pF $V_{DS} = -30 \text{ V}, \quad V_{GS} = 0 \text{ V},$ Coss f = 1.0 MHz **Output Capacitance** 84 pF pF C_{rss} **Reverse Transfer Capacitance** 33 Switching Characteristics (Note 2) Turn-On Delay Time 8 15 $V_{DD} = -30 V,$ $I_{\rm D} = -1 \, {\rm A},$ ns t_{d(on)} $V_{GS}=-10~V,~~R_{GEN}=6~\Omega$ Turn-On Rise Time 19 tr 11 ns Turn-Off Delay Time 28 45 t_{d(off)} ns Turn-Off Fall Time 8.5 17 ns tf Qg **Total Gate Charge** $V_{DS} = -30V$, $I_{D} = -3A$, 15 21 nC $V_{GS} = -10 V$ Qas Gate-Source Charge 2 nC Q_{gd} Gate-Drain Charge 3 nC **Drain–Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current -1.3 I_{S} А V_{SD} Drain-Source Diode Forward $V_{GS} = 0 V$, $I_S = -1.3 A$ (Note 2) -0.8 -1.2 V Voltage

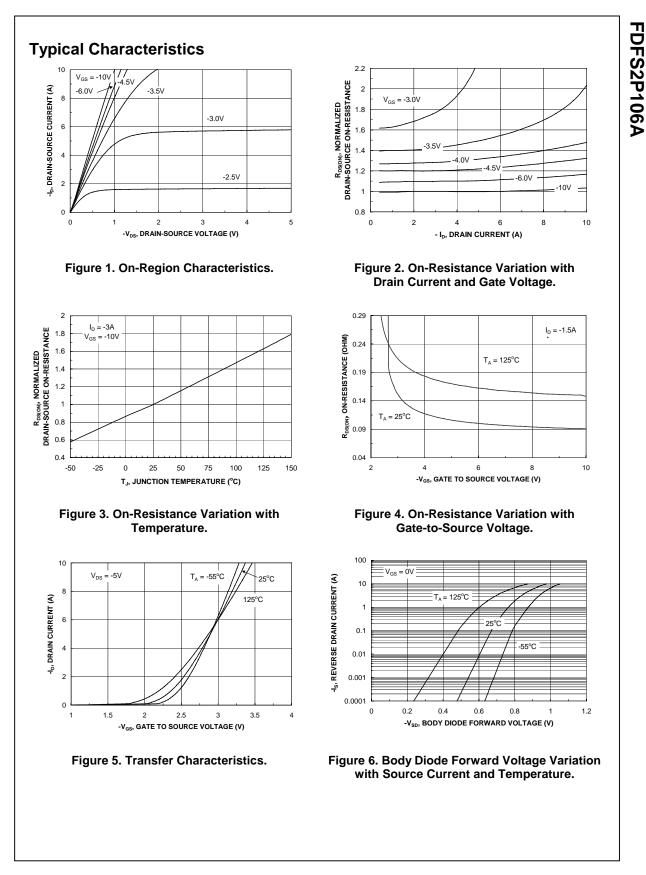
FDFS2P106A

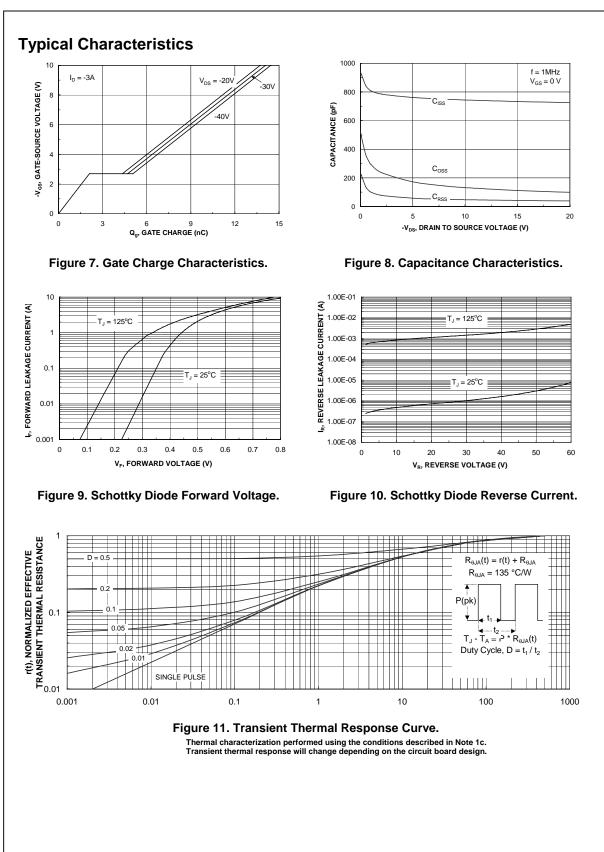

Symbol	Parameter	Test C	Test Conditions			Max	Units
Schottky Diode Characteristics							
I _R	Reverse Leakage	V _R = 45 V	$T_J = 25^{\circ}C$		2.8	80	μA
			T _J = 125°C		2.2	80	mA
V _F	Forward Voltage	I _F = 1 A	T _J = 25°C		0.44	0.53	V
			T _J = 125°C		0.34	0.45	
		$I_F = 2 A$	T _J = 25°C		0.49	0.62	
			T _{.1} = 125°C		0.42	0.57	

Thermal Characteristics

R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Notes:


 R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDFS2P106A

FDFS2P106A Rev B(W)

FDFS2P106A

FDFS2P106A Rev B(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] *CROSSVOLT*[™] DenseTrench[™] DOME[™] EcoSPARK[™] E²CMOS[™] EnSigna[™] FACT[™] FACT Quiet Series[™] FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. H3